KU LEUVEN

Black-Box Characterization of The Effects of Laser Pulses on ATmega328P

Dilip S V Kumar, <u>Arthur Beckers</u>, Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede

CARDIS 2018

Introduction

- Movitation :
 - Fault model descriptions for actual devices are rare
 - Assumed fault model for microcontroller is often instruction skip, while the reality is more complex
- Aim: find fault model for ATmega328p microcontroller
- Atmega328p is built in a rather old technology but still widely used

Atmega328P

Fault injection setup

- 1. Start command
- 2. Execute target code
- 3. Send trigger
- 4. Enable laser FI
- 5. Send back result
- 6. Reset target

Laser setup

- Wavelength = 1064nm
- 50X magnification
- NIR lighting system
- XYZ stepper table, 0.1µm resolution
- Throug substrate fault injection
- CMOS NIR camera

Characterization strategy

Cycle	Instruction
1	sbi 0X0B, 7 // trigger
2	nop
3	nop
4	target
5	nop
6	nop

- ATMega328p has a two stage pipeline: fetch and execute
- Put the register file to a known state
- After laser pulse read out register file content
- After a laser pulse injection the microcontroller is always reset to a known state

KU LEU

Full chip scan: muls r23,r27

Muls r23,r27

Target instruction: muls r23,r27

Segment	Cycle	Instruction	Opcode(bin)	Bit(s) Reset
	i	nop	0000 0000 0000 0000	
	i+1	muls r23, r27	$0000 \ 0010 \ 0111 \ 1011$	
1	i+1	muls r23, r26	0000 0010 0111 1010	b_0
2	i+1	muls r23, r24	$0000 \ 0010 \ 0111 \ 1000$	$b_0 \& b_1$
3	i+1	muls r23, r25	$0000 \ 0010 \ 0111 \ 1001$	b_1
4	i+1	muls r23, r19	$0000 \ 0010 \ 0111 \ 0011$	b_3
5	i+1	muls r22, r19	$0000 \ 0010 \ 0110 \ 0011$	$b_3 \& b_4$
6	i+1	muls r22, r27	$0000 \ 0010 \ 0110 \ 1011$	b_4
7	i+1	muls r20, r27	$0000 \ 0010 \ 0100 \ 1011$	$b_4 \& b_5$
8	i+1	muls r21, r27	$0000 \ 0010 \ 0101 \ 1011$	b_5
9	i+1	muls r17, r27	$0000 \ 0010 \ 0001 \ 1011$	$b_5 \& b_6$
10	i+1	muls r19, r27	$0000 \ 0010 \ 0011 \ 1011$	b_6
11	i+1	nop(Invalid)	$0000 \ 0000 \ 0111 \ 1011$	b_9

Flash memory structure

Loading data from program memory

Instruction: Ipm r9, Z

- Flash memory stores 16-bit words
- Z pointer is a byte address

Loading data from program memory

Z = 0x0101

12

Second sensitive region

- nop
- muls r16, r16
- and r0, r16
- or r0, r18
- or r0, r16

Influence laser parameters

Laser energy = pulse duration X laser power

70ns X 0.6W

70ns X 1.2W

Fault exploitation

- Fault model = stuck at 0 faults for data read out from flash memory
- No permanent faults

Program flow faults:

SRNE 1111 01kk kkkk k001 BREQ 1111 00kk kkkk k001

Data faults:

Fault loading of S-box values → classical DFA

KUL

Conclusion

- Able to fault data and instructions loaded from flash memory
- The induced faults are deterministic
- An in depth knowledge of the fault model can lead to powerfull attacks

Questions?

