UNIVERSITE

DE LYON I

= UNIVERSITE
JEAN MONNET

@ ™) J SANTETIENNE

Side-channel
information

mmmmmmmmmmm

power

o a6 e s 100 T
time samples

k=0

mo

Ti00 1600 1800 2000

Divide-and-conquer strategy.

power

o a6 e s 100 T
time samples

k=1

my

Ti00 1600 1800 2000

Divide-and-conquer strategy.

——H / comparison Pr[k = 255]
N | Mmass

k = 255

Divide-and-conquer strategy.

ko ki ko e kis
0X2a,0.125 | 0X23,0.128 | 0X10,0.325 0X45,0.347
0Xcd,0.100 0X51,0.045 0X01,0.204 0Xdc,0.210
0Xae,0.050 | 0X£f£f,0.035 | 0X13,0.036 0X83,0.151

0X63,0.025 | 0X2b,0.025 | 0X58,0.029 0X13,0.035

ko ky ko kis
0Xcd,0.100 0X51,0.045 0X01,0.204 0Xdc,0.210
0Xae,0.050 | OXff,0.035 | 0X13,0.036 0X83,0.151
0X63,0.025 0X2b,0.025 0X58,0.029 0X13,0.035
Enough
side-channel
information

= direct recovery

(attack)

0X2a,0.125

0X51,0.045

0X01,0.204 0Xdc,0.210

0Xae,0.050 | 0Xff,0.035 | 0X13,0.036 0X83,0.151
0X63,0.025 0X2b,0.025 0X58,0.029 0X13,0.035
Enough Not Enough side-channel
side-channel information, enough
information computational power
= direct recovery = enumeration

(attack) (attack)

ko ky ko o kis

0X2a,0.125 | 0X23,0.128 | 0X10,0.325 0X45,0.347

0X01,0.204 0Xdc,0.210
0Xae,0.050 | 0Xf£f,0.035 | 0X13,0.036 -

0X63,0.025 0X2b,0.025 0X13,0.035
Enough Not Enough side-channel
side-channel information, enough
information computational power
= direct recovery = enumeration

(attack) (attack)

Enough Not Enough side-channel
side-channel information, enough
information computational power

= direct recovery = enumeration

(attack) (attack)

ko ky ko kis
0X2a,0.125 | 0X23,0.128 | 0X10,0.325 0X45,0.347
0Xcd,0.100 0X51,0.045 0X01,0.204 0Xdc,0.210
0Xae,0.050 | 0X£f£f,0.035 | 0X13,0.036 0X83,0.151
0X63,0.025 0X2b,0.025 0X58,0.029 0X13,0.035

Not Enough side-channel
information, not enough
computational power
=>rank estimation
(key needed, evaluation)

1. Previous solutions
2. New solution
3. Experimental results

4. Conclusion

Previous solutions

rank(k) = #{k*| Pr[k*|SCI] > Pr[k|SCI]}.

#{k*} > 2128

rank(k) = #{k*| Pr[k*|SCI] > Pr[k|SCI]}.

#{k*} > 2128

Divide-and-conquer approach on independent subkeys

rank(k) = #{k*| Pr[k*|SCI] > Pr[k|SCI]}.

#{k*} > 2128

Divide-and-conquer approach on independent subkeys

Space carving {k*} into 3 parts:
< Pr[k|SCI] ? Pr[k|SCI] <

Smaller is the part ? the more accurate is the rank estimation 5

Method Pros Cons
i First solution, can compute | Quite slow, quite loose
Eurocrypt'13 . . .
the exact rank (in theory) bounds (in practice)
Pro'15
FSE'15

Asiacrypt’ 15
CT-RSA'17

CHES'17

This paper

Method

Pros

Cons

Eurocrypt'13

Pro'15

FSE'15

Asiacrypt’ 15
CT-RSA'17

CHES'17

This paper

First solution, can compute
the exact rank (in theory)
Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Quite loose
bounds (in practice)

Quite slow for large keys and

slow, quite

reasonable tightness
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness

Method

Pros

Cons

Eurocrypt'13

Pro'15
FSE'15

Asiacrypt’ 15
CT-RSA'17

CHES'17

This paper

First solution, can compute
the exact rank (in theory)
Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient solution

Quite loose

bounds (in practice)

slow, quite
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness

Loose bound, not exact rank

Method

Pros

Cons

Eurocrypt'13

Pro'15

FSE'15

Asiacrypt’ 15
CT-RSA'17

CHES'17

This paper

First solution, can compute
the exact rank (in theory)
Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient solution

Really fast even for large key

Quite loose

bounds (in practice)

slow, quite
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness
Loose bound, not exact rank

Expected value of the rank,
not rank estimation

Method

Pros

Cons

Eurocrypt'13

Pro'15

FSE'15

Asiacrypt’ 15
CT-RSA'17

CHES'17

This paper

First solution, can compute
the exact rank (in theory)
Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient solution

Really fast even for large key

Fast, tight estimation of the
rank even for large key

Quite loose

bounds (in practice)

slow, quite
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness
Loose bound, not exact rank

Expected value of the rank,
not rank estimation

Less efficient than CHES'17

keys

Candidate

0

~N o O Ww N =

2

Pr
0.6643
0.2588
0.0313
0.0412
0.0001
0.0020
0.0013
0.0010

hy

3
bin number

ki
log
-0.5901
-1.9501
-4.9977
-4.6012
-13.2877
-8.9658
-9.5873
-9.9658

o
E

wWWwWWwW s NN

keys
o

Pr
0.0012
0.0011
0.3588
0.0713
0.5643
0.0012

0.00005
0.00205

2

ko
log
-9.7027
-9.8283
-1.4787
-3.8100
-0.8255
-9.7027
-14.2877
-8.9302

ha

3
bin number

o
s

WA W R Ww

Perform convolution of histogram

conv(hy, h)[i] = Z hi[j]hai — Jj]
=0

conv(hy, ha)

bin number

ha Hy Hy Hj —— > Hys
COW COW COW COHW
hy hs ha hig

Size of H; grows

For large number of dimension we perform convolution on larger and
larger histograms: could be costly.

40 B
)
3 30 - *
o
2
g
2 20| |
o
.S
g
=
54
S 10l .
[}
—— 216 bins matlab
—— 212 hing C
0 | | | | |

0 20 40 60 80 100 120 140
subkeys

Can the cost be linear in the number of subkeys?

10

New solution

Keep the size of the histogram constant

batching(conv(hy, hz))
30

20

keys

10

bin number

11

Similar to classical histogram solution we can keep track of the position

(bin of the key)
Similar as dividing the number of bins by the number of subkeys

Convolution need equally bin sized histogram: need a balanced tree
hy ho hs hy
VARV
H H
Hy Hy
Km‘ml?ti/
H

structure

—
Suroyeq
—

Sunpyeq

12

—
Surpyeq

F

Similar as doing classical histogram convolution with large bin
But a better tracking of the estimation error
v . number of subkeys

e: size of bin /2

Method error cost
Classical FSE'15 ve quadratic
Reduced FSE'15 Ve linear
Batching (v +logy(v)5 e linear

13

Experimental results

» Matlab implementation (limited to 1024-bit key)
» C implementation

Leakages: subkey+noise (S-bex)

Size of subkey: 8-bit

Number of subkeys: 8-1024

Number of bins: tightness-efficiency parameter

14

10 —— FSE'15 2'6 bins matlab
—— FSE’15 2'2 bins C
'/g\ —— Our solution 2'¢ bins matlab
§ 30 —+— Our solution 2'? bins C
w
g
B 20
o
2
=
o4
& 10
<5
0 | | | | |
0 200 400 600 800 1,000
subkeys

Our solution has a complexity linear in the number of subkeys

15

200 T T T T T
—— FSE’15 2'6 bins matlab
—— Our solution 2'¢ bins matlab /
5ol FSE'15 212 bins C |
—+— Our solution 2'? bins %

100 |- b

tightness

Lo syt 1 1 1 1 1
OO 200 400 600 800 1,000
subkeys

Works for very long key, with tightness damage

16

20

15
g
£ 10
50
5
0

T
—— FSE’15 216 bins matlab
—— Our solution 2'¢ bins matlab

| —— FSE’15 2'2 bins C B
—%— Our solution 2'? bins

g I I I N !
20 40 60 80 100 120 140
subkeys

Works for very long key, with tightness damage

16

6l=— " FSE15 (1 bit)]
—— FSE’15 (0.3 bit)
:;5:\ —— Our solution (1 bit)
S —— Our solution (0.3 bit)
2 ur :
Q)
£
=
-2
: 7 |
%
[}
0 - 4

- 1
0 20 40 60 80 100 120 140
subkeys

Adapted number of bin to have similar tightness

17

1072
—— FSE’15
8| —e— Our solution 7
= —o— CHES’17
§ 6
[} - -
=z
[}
£
FR |
<
5 2f 1
0 ‘ ’-r:/_.

¥ 9 1
0 20 40 60 80 100 120 140
subkeys

CHES'17 solution is not so tight (6 bits, and cannot be tightened) all
solutions are efficient (< 0.1s)

18

Conclusion

Trick for rank estimation for large keys

Tight and efficient method

19

Trick for rank estimation for large keys
Tight and efficient method

Limited to independent attack

Prik,] ’ ‘ Prik,]

19

Thanks!

Comments?

Questions?

20

	Previous solutions
	New solution
	Experimental results
	Conclusion

