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Side-channel attacks: cryptography
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Side-channel attacks
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Side-channel attacks
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Side-channel attacks: result
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Problem

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k |SCI]}.

#{k∗} ≥ 2128

Divide-and-conquer approach on independent subkeys

Space carving {k∗} into 3 parts:

< Pr[k|SCI] ? Pr[k|SCI] <

Smaller is the part ? the more accurate is the rank estimation

5



Problem

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k |SCI]}.

#{k∗} ≥ 2128

Divide-and-conquer approach on independent subkeys

Space carving {k∗} into 3 parts:

< Pr[k|SCI] ? Pr[k|SCI] <

Smaller is the part ? the more accurate is the rank estimation

5



Problem

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k |SCI]}.

#{k∗} ≥ 2128

Divide-and-conquer approach on independent subkeys

Space carving {k∗} into 3 parts:

< Pr[k|SCI] ? Pr[k |SCI] <

Smaller is the part ? the more accurate is the rank estimation 5



Rank estimation algorithms zoo

Method Pros Cons

Eurocrypt’13
First solution, can compute

the exact rank (in theory)

Quite slow, quite loose

bounds (in practice)

Pro’15

Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

FSE’15

Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

Asiacrypt’ 15

Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

CT-RSA’17

Efficient solution Loose bound, not exact rank

CHES’17

Really fast even for large key
Expected value of the rank,

not rank estimation

This paper

Fast, tight estimation of the

rank even for large key
Less efficient than CHES’17
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The histogram solution (FSE’15)

k1 k2

Candidate Pr log bin Pr log bin

0 0.6643 -0.5901 1 0.0012 -9.7027 3

1 0.2588 -1.9501 1 0.0011 -9.8283 3

2 0.0313 -4.9977 2 0.3588 -1.4787 1

3 0.0412 -4.6012 2 0.0713 -3.8100 1

4 0.0001 -13.2877 4 0.5643 -0.8255 1

5 0.0020 -8.9658 3 0.0012 -9.7027 3

6 0.0013 -9.5873 3 0.00005 -14.2877 4

7 0.0010 -9.9658 3 0.00205 -8.9302 3
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Mix result

Perform convolution of histogram

conv(h1, h2)[i ] =
i∑

j=0

h1[j ]h2[i − j ]
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Mix more results
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Limitation for larger keys

For large number of dimension we perform convolution on larger and

larger histograms: could be costly.
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New solution



Batching

Keep the size of the histogram constant

1 2 3 4
0

10

20

30

bin number

#
k
ey
s

batching(conv(h1, h2))

11



Why does it work?

Similar to classical histogram solution we can keep track of the position

(bin of the key)

Similar as dividing the number of bins by the number of subkeys

Convolution need equally bin sized histogram: need a balanced tree

structure
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Why is more efficient?

Similar as doing classical histogram convolution with large bin

But a better tracking of the estimation error

ν : number of subkeys

ε: size of bin /2

Method error cost

Classical FSE’15 νε quadratic

Reduced FSE’15 ν2ε linear

Batching (ν + log2(ν)ν
2 )ε linear
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Experimental results



Experimental setup

I Matlab implementation (limited to 1024-bit key)

I C implementation

Leakages: subkey+noise (S-box)

Size of subkey: 8-bit

Number of subkeys: 8-1024

Number of bins: tightness-efficiency parameter
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Efficiency
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Tightness

0 200 400 600 800 1,000
0

50

100

150

200

# subkeys

ti
gh

tn
es
s

FSE’15 216 bins matlab

Our solution 216 bins matlab

FSE’15 212 bins C

Our solution 212 bins C

Works for very long key, with tightness damage

16



Tightness
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Similar tightness
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Similar tightness CHES’17
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CHES’17 solution is not so tight (6 bits, and cannot be tightened) all

solutions are efficient (< 0.1s)
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Conclusion



Conclusion & open problems

Trick for rank estimation for large keys

Tight and efficient method

Limited to independent attack
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Thanks!

Questions?

Comments?
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