
Scalable Key Rank Estimation Algorithm for

Large Keys

Vincent Grosso

13/11/2018

CNRS/laboratoire Hubert Curien

Université Jean Monnet

Saint-Étienne

Side-channel attacks: cryptography

Side-channel
information

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

??

inputs

outputs

1

Side-channel attacks: cryptography

Side-channel
information

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

42

inputs

outputs

1

Side-channel attacks

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

z0 S-box y0
⊕

x

k = 0

model

m0

comparison Pr[k = 0]
l

Divide-and-conquer strategy.

2

Side-channel attacks

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

z1 S-box y1
⊕

x

k = 1

model

m1

comparison Pr[k = 1]
l

Divide-and-conquer strategy.

2

Side-channel attacks

0 200 400 600 800 1000 1200 1400 1600 1800 2000

time samples

p
o
w

e
r

z255 S-box y255
⊕

x

k = 255

model

m255

comparison Pr[k = 255]
l

Divide-and-conquer strategy.

2

Side-channel attacks: result

k0 k1 k2
. . . k15

0X2a,0.125

0Xcd,0.100

0Xae,0.050

0X63,0.025

0X23,0.128

0X51,0.045

0Xff,0.035

0X2b,0.025

. . .

0X10,0.325

0X01,0.204

0X13,0.036

0X58,0.029

0X45,0.347

0Xdc,0.210

0X83,0.151

0X13,0.035

.

Enough

side-channel

information

⇒ direct recovery

(attack)

Not Enough side-channel

information, enough

computational power

⇒ enumeration

(attack)

Not Enough side-channel

information, not enough

computational power

⇒rank estimation

(key needed, evaluation)

3

Side-channel attacks: result

k0 k1 k2
. . . k15

0X2a,0.125

0Xcd,0.100

0Xae,0.050

0X63,0.025

0X23,0.128

0X51,0.045

0Xff,0.035

0X2b,0.025

. . .

0X10,0.325

0X01,0.204

0X13,0.036

0X58,0.029

0X45,0.347

0Xdc,0.210

0X83,0.151

0X13,0.035

.

Enough

side-channel

information

⇒ direct recovery

(attack)

Not Enough side-channel

information, enough

computational power

⇒ enumeration

(attack)

Not Enough side-channel

information, not enough

computational power

⇒rank estimation

(key needed, evaluation)

3

Side-channel attacks: result

k0 k1 k2
. . . k15

0X2a,0.125

0Xcd,0.100

0Xae,0.050

0X63,0.025

0X23,0.128

0X51,0.045

0Xff,0.035

0X2b,0.025

. . .

0X10,0.325

0X01,0.204

0X13,0.036

0X58,0.029

0X45,0.347

0Xdc,0.210

0X83,0.151

0X13,0.035

.

Enough

side-channel

information

⇒ direct recovery

(attack)

Not Enough side-channel

information, enough

computational power

⇒ enumeration

(attack)

Not Enough side-channel

information, not enough

computational power

⇒rank estimation

(key needed, evaluation)

3

Side-channel attacks: result

k0 k1 k2
. . . k15

0X2a,0.125

0Xcd,0.100

0Xae,0.050

0X63,0.025

0X23,0.128

0X51,0.045

0Xff,0.035

0X2b,0.025

. . .

0X10,0.325

0X01,0.204

0X13,0.036

0X58,0.029

0X45,0.347

0Xdc,0.210

0X83,0.151

0X13,0.035

.

Enough

side-channel

information

⇒ direct recovery

(attack)

Not Enough side-channel

information, enough

computational power

⇒ enumeration

(attack)

Not Enough side-channel

information, not enough

computational power

⇒rank estimation

(key needed, evaluation)

3

Side-channel attacks: result

k0 k1 k2
. . . k15

0X2a,0.125

0Xcd,0.100

0Xae,0.050

0X63,0.025

0X23,0.128

0X51,0.045

0Xff,0.035

0X2b,0.025

. . .

0X10,0.325

0X01,0.204

0X13,0.036

0X58,0.029

0X45,0.347

0Xdc,0.210

0X83,0.151

0X13,0.035

.

Enough

side-channel

information

⇒ direct recovery

(attack)

Not Enough side-channel

information, enough

computational power

⇒ enumeration

(attack)

Not Enough side-channel

information, not enough

computational power

⇒rank estimation

(key needed, evaluation)

3

Table of contents

1. Previous solutions

2. New solution

3. Experimental results

4. Conclusion

4

Previous solutions

Problem

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k |SCI]}.

#{k∗} ≥ 2128

Divide-and-conquer approach on independent subkeys

Space carving {k∗} into 3 parts:

< Pr[k|SCI] ? Pr[k|SCI] <

Smaller is the part ? the more accurate is the rank estimation

5

Problem

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k |SCI]}.

#{k∗} ≥ 2128

Divide-and-conquer approach on independent subkeys

Space carving {k∗} into 3 parts:

< Pr[k|SCI] ? Pr[k|SCI] <

Smaller is the part ? the more accurate is the rank estimation

5

Problem

rank(k) = #{k∗|Pr[k∗|SCI] ≥ Pr[k |SCI]}.

#{k∗} ≥ 2128

Divide-and-conquer approach on independent subkeys

Space carving {k∗} into 3 parts:

< Pr[k|SCI] ? Pr[k |SCI] <

Smaller is the part ? the more accurate is the rank estimation 5

Rank estimation algorithms zoo

Method Pros Cons

Eurocrypt’13
First solution, can compute

the exact rank (in theory)

Quite slow, quite loose

bounds (in practice)

Pro’15

Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

FSE’15

Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

Asiacrypt’ 15

Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

CT-RSA’17

Efficient solution Loose bound, not exact rank

CHES’17

Really fast even for large key
Expected value of the rank,

not rank estimation

This paper

Fast, tight estimation of the

rank even for large key
Less efficient than CHES’17

6

Rank estimation algorithms zoo

Method Pros Cons

Eurocrypt’13
First solution, can compute

the exact rank (in theory)

Quite slow, quite loose

bounds (in practice)

Pro’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

FSE’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

Asiacrypt’ 15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

CT-RSA’17

Efficient solution Loose bound, not exact rank

CHES’17

Really fast even for large key
Expected value of the rank,

not rank estimation

This paper

Fast, tight estimation of the

rank even for large key
Less efficient than CHES’17

6

Rank estimation algorithms zoo

Method Pros Cons

Eurocrypt’13
First solution, can compute

the exact rank (in theory)

Quite slow, quite loose

bounds (in practice)

Pro’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

FSE’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

Asiacrypt’ 15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

CT-RSA’17 Efficient solution Loose bound, not exact rank

CHES’17

Really fast even for large key
Expected value of the rank,

not rank estimation

This paper

Fast, tight estimation of the

rank even for large key
Less efficient than CHES’17

6

Rank estimation algorithms zoo

Method Pros Cons

Eurocrypt’13
First solution, can compute

the exact rank (in theory)

Quite slow, quite loose

bounds (in practice)

Pro’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

FSE’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

Asiacrypt’ 15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

CT-RSA’17 Efficient solution Loose bound, not exact rank

CHES’17 Really fast even for large key
Expected value of the rank,

not rank estimation

This paper

Fast, tight estimation of the

rank even for large key
Less efficient than CHES’17

6

Rank estimation algorithms zoo

Method Pros Cons

Eurocrypt’13
First solution, can compute

the exact rank (in theory)

Quite slow, quite loose

bounds (in practice)

Pro’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

FSE’15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

Asiacrypt’ 15
Efficient and tight solution

for small keys

Quite slow for large keys and

reasonable tightness

CT-RSA’17 Efficient solution Loose bound, not exact rank

CHES’17 Really fast even for large key
Expected value of the rank,

not rank estimation

This paper
Fast, tight estimation of the

rank even for large key
Less efficient than CHES’17

6

The histogram solution (FSE’15)

k1 k2

Candidate Pr log bin Pr log bin

0 0.6643 -0.5901 1 0.0012 -9.7027 3

1 0.2588 -1.9501 1 0.0011 -9.8283 3

2 0.0313 -4.9977 2 0.3588 -1.4787 1

3 0.0412 -4.6012 2 0.0713 -3.8100 1

4 0.0001 -13.2877 4 0.5643 -0.8255 1

5 0.0020 -8.9658 3 0.0012 -9.7027 3

6 0.0013 -9.5873 3 0.00005 -14.2877 4

7 0.0010 -9.9658 3 0.00205 -8.9302 3

1 2 3 4
0

1

2

3

4

bin number

#
k
ey
s

h1

1 2 3 4
0

1

2

3

4

bin number

#
k
ey
s

h2

7

Mix result

Perform convolution of histogram

conv(h1, h2)[i] =
i∑

j=0

h1[j]h2[i − j]

1 2 3 4 5 6 7
0

5

10

15

20

bin number

#
k
ey
s

conv(h1, h2)

8

Mix more results

h1

h2

convolution convolution convolution convolution

H1

h3

H2

h4

H3

h16

. . .

H15

Size of Hi grows

9

Limitation for larger keys

For large number of dimension we perform convolution on larger and

larger histograms: could be costly.

0 20 40 60 80 100 120 140
0

10

20

30

40

subkeys

ex
ec
u
ti
on

ti
m
e
(s
ec
o
n
d
)

216 bins matlab

212 bins C

Can the cost be linear in the number of subkeys?

10

New solution

Batching

Keep the size of the histogram constant

1 2 3 4
0

10

20

30

bin number

#
k
ey
s

batching(conv(h1, h2))

11

Why does it work?

Similar to classical histogram solution we can keep track of the position

(bin of the key)

Similar as dividing the number of bins by the number of subkeys

Convolution need equally bin sized histogram: need a balanced tree

structure

H2

H

H2

H

h4h3

conv.
b
atch

in
g

H2

H

h2h1

conv.

b
atch

in
g

convolution

b
a
tch

in
g

12

Why is more efficient?

Similar as doing classical histogram convolution with large bin

But a better tracking of the estimation error

ν : number of subkeys

ε: size of bin /2

Method error cost

Classical FSE’15 νε quadratic

Reduced FSE’15 ν2ε linear

Batching (ν + log2(ν)ν
2)ε linear

13

Experimental results

Experimental setup

I Matlab implementation (limited to 1024-bit key)

I C implementation

Leakages: subkey+noise (S-box)

Size of subkey: 8-bit

Number of subkeys: 8-1024

Number of bins: tightness-efficiency parameter

14

Efficiency

0 200 400 600 800 1,000
0

10

20

30

40

subkeys

ex
ec
u
ti
on

ti
m
e
(s
ec
on

d
)

FSE’15 216 bins matlab

FSE’15 212 bins C

Our solution 216 bins matlab

Our solution 212 bins C

Our solution has a complexity linear in the number of subkeys

15

Tightness

0 200 400 600 800 1,000
0

50

100

150

200

subkeys

ti
gh

tn
es
s

FSE’15 216 bins matlab

Our solution 216 bins matlab

FSE’15 212 bins C

Our solution 212 bins C

Works for very long key, with tightness damage

16

Tightness

0 20 40 60 80 100 120 140
0

5

10

15

20

subkeys

ti
gh

tn
es
s

FSE’15 216 bins matlab

Our solution 216 bins matlab

FSE’15 212 bins C

Our solution 212 bins C

Works for very long key, with tightness damage

16

Similar tightness

0 20 40 60 80 100 120 140
0

2

4

6

subkeys

ex
ec
u
ti
on

ti
m
e
(s
ec
on

d
)

FSE’15 (1 bit)

FSE’15 (0.3 bit)

Our solution (1 bit)

Our solution (0.3 bit)

Adapted number of bin to have similar tightness

17

Similar tightness CHES’17

0 20 40 60 80 100 120 140
0

2

4

6

8

·10−2

subkeys

ex
ec
u
ti
o
n
ti
m
e
(s
ec
on

d
)

FSE’15
Our solution
CHES’17

CHES’17 solution is not so tight (6 bits, and cannot be tightened) all

solutions are efficient (< 0.1s)

18

Conclusion

Conclusion & open problems

Trick for rank estimation for large keys

Tight and efficient method

Limited to independent attack

19

Conclusion & open problems

Trick for rank estimation for large keys

Tight and efficient method

Limited to independent attack

19

Thanks!

Questions?

Comments?

20

	Previous solutions
	New solution
	Experimental results
	Conclusion

