

# Scalable Key Rank Estimation Algorithm for Large Keys

Vincent Grosso 13/11/2018

CNRS/laboratoire Hubert Curien Université Jean Monnet Saint-Étienne

## Side-channel attacks: cryptography







??

1

### Side-channel attacks: cryptography



#### Side-channel attacks



Divide-and-conquer strategy.

#### Side-channel attacks



Divide-and-conquer strategy.

#### Side-channel attacks



Divide-and-conquer strategy.

| $k_0$      | $k_1$      | <i>k</i> <sub>2</sub> | ••• | k <sub>15</sub> |
|------------|------------|-----------------------|-----|-----------------|
| 0X2a,0.125 | 0X23,0.128 | 0X10,0.325            |     | 0X45,0.347      |
| 0Xcd,0.100 | 0X51,0.045 | 0X01,0.204            |     | 0Xdc,0.210      |
| 0Xae,0.050 | 0Xff,0.035 | 0X13,0.036            |     | 0X83,0.151      |
| 0X63,0.025 | 0X2b,0.025 | 0X58,0.029            |     | 0X13,0.035      |
|            |            |                       |     |                 |

| $k_0$      | $k_1$      | k <sub>2</sub> | <br>k <sub>15</sub> |
|------------|------------|----------------|---------------------|
| 0X2a,0.125 | 0X23,0.128 | 0X10,0.325     | 0X45,0.347          |
| 0Xcd,0.100 | 0X51,0.045 | 0X01,0.204     | 0Xdc,0.210          |
| 0Xae,0.050 | 0Xff,0.035 | 0X13,0.036     | 0X83,0.151          |
| 0X63,0.025 | 0X2b,0.025 | 0X58,0.029     | 0X13,0.035          |
|            |            |                |                     |

Enough side-channel information

 $\Rightarrow$  direct recovery (attack)

3

| $k_0$      | $k_1$      | <i>k</i> <sub>2</sub> | <br>$k_{15}$ |
|------------|------------|-----------------------|--------------|
| 0X2a,0.125 | 0X23,0.128 | 0X10,0.325            | 0X45,0.347   |
| 0Xcd,0.100 | 0X51,0.045 | 0X01,0.204            | 0Xdc,0.210   |
| 0Xae,0.050 | 0Xff,0.035 | 0X13,0.036            | 0X83,0.151   |
| 0X63,0.025 | 0X2b,0.025 | 0X58,0.029            | 0X13,0.035   |
|            |            |                       |              |

Enough side-channel information ⇒ direct recovery (attack)

overy

Not Enough side-channel information, enough computational power ⇒ enumeration (attack)

| $k_0$      | $k_1$      | <i>k</i> <sub>2</sub> | <br>k <sub>15</sub> |
|------------|------------|-----------------------|---------------------|
| 0X2a,0.125 | 0X23,0.128 | 0X10,0.325            | 0X45,0.347          |
| 0Xcd,0.100 | 0X51,0.045 | 0X01,0.204            | 0Xdc,0.210          |
| 0Xae,0.050 | 0Xff,0.035 | 0X13,0.036            | 0X83,0.151          |
| 0X63,0.025 | 0X2b,0.025 | 0X58,0.029            | 0X13,0.035          |
|            |            |                       |                     |

Enough side-channel information ⇒ direct recovery (attack) Not Enough side-channel information, enough computational power ⇒ enumeration (attack)

| $k_0$      | $k_1$      | <i>k</i> <sub>2</sub> | <br>$k_{15}$ |
|------------|------------|-----------------------|--------------|
| 0X2a,0.125 | 0X23,0.128 | 0X10,0.325            | 0X45,0.347   |
| 0Xcd,0.100 | 0X51,0.045 | 0X01,0.204            | 0Xdc,0.210   |
| 0Xae,0.050 | 0Xff,0.035 | 0X13,0.036            | 0X83,0.151   |
| 0X63,0.025 | 0X2b,0.025 | 0X58,0.029            | 0X13,0.035   |
|            |            |                       |              |

Enough side-channel information ⇒ direct recovery (attack) Not Enough side-channel information, enough computational power ⇒ enumeration (attack) Not Enough side-channel information, not enough computational power ⇒rank estimation (key needed, evaluation)

- 1. Previous solutions
- 2. New solution
- 3. Experimental results
- 4. Conclusion

## **Previous solutions**

Problem

$$\mathsf{rank}(k) = \#\{k^* | \mathsf{Pr}[k^* | \mathrm{SCI}] \ge \mathsf{Pr}[k | \mathrm{SCI}]\}.$$

 $\#\{k^*\} \ge 2^{128}$ 

Problem

$$\mathsf{rank}(k) = \#\{k^* | \mathsf{Pr}[k^* | \mathrm{SCI}] \ge \mathsf{Pr}[k | \mathrm{SCI}]\}.$$

 $\#\{k^*\} \ge 2^{128}$ 

Divide-and-conquer approach on independent subkeys



**Problem** 

$$\mathsf{rank}(k) = \#\{k^* | \mathsf{Pr}[k^* | \mathsf{SCI}] \ge \mathsf{Pr}[k | \mathsf{SCI}]\}.$$

 $\#\{k^*\} \ge 2^{128}$ 

Divide-and-conquer approach on independent subkeys



 $\label{eq:space carving } \begin{array}{l} \{k^*\} \mbox{ into 3 parts:} \\ < \Pr[k|{\rm SCI}] & ? & \Pr[k|{\rm SCI}] < \end{array}$ 

Smaller is the part ? the more accurate is the rank estimation

| Method        | Pros                        | Cons                    |
|---------------|-----------------------------|-------------------------|
| Eurocount'13  | First solution, can compute | Quite slow, quite loose |
| Eurocrypt 15  | the exact rank (in theory)  | bounds (in practice)    |
| Pro'15        |                             |                         |
| FSE'15        |                             |                         |
| Asiacrypt' 15 |                             |                         |
| CT-RSA'17     |                             |                         |
| CHES'17       |                             |                         |
| This paper    |                             |                         |

| Method       | Pros                         | Cons                          |  |  |
|--------------|------------------------------|-------------------------------|--|--|
| Eurocount'13 | First solution, can compute  | Quite slow, quite loose       |  |  |
| Eurocrypt 15 | the exact rank (in theory)   | bounds (in practice)          |  |  |
| D            | Efficient and tight solution | Quite slow for large keys and |  |  |
| Pro 15       | for small keys               | reasonable tightness          |  |  |
|              | Efficient and tight solution | Quite slow for large keys and |  |  |
| FSE 15       | for small keys               | reasonable tightness          |  |  |
| A .'' 1 E    | Efficient and tight solution | Quite slow for large keys and |  |  |
| Asiacrypt 15 | for small keys               | reasonable tightness          |  |  |
| CT-RSA'17    |                              |                               |  |  |
| CHES'17      |                              |                               |  |  |
|              |                              |                               |  |  |
| This paper   |                              |                               |  |  |

| Method       | Pros                         | Cons                          |  |  |
|--------------|------------------------------|-------------------------------|--|--|
| Eurocount'13 | First solution, can compute  | Quite slow, quite loose       |  |  |
| Eurocrypt 15 | the exact rank (in theory)   | bounds (in practice)          |  |  |
| D            | Efficient and tight solution | Quite slow for large keys and |  |  |
| Pro 15       | for small keys               | reasonable tightness          |  |  |
|              | Efficient and tight solution | Quite slow for large keys and |  |  |
| FSE 15       | for small keys               | reasonable tightness          |  |  |
| A            | Efficient and tight solution | Quite slow for large keys and |  |  |
| Asiacrypt 15 | for small keys               | reasonable tightness          |  |  |
| CT-RSA'17    | Efficient solution           | Loose bound, not exact rank   |  |  |
| CHES'17      |                              |                               |  |  |
|              |                              |                               |  |  |
| This paper   |                              |                               |  |  |

| Method        | Pros                           | Cons                          |  |  |
|---------------|--------------------------------|-------------------------------|--|--|
| Eurocrupt'12  | First solution, can compute    | Quite slow, quite loose       |  |  |
| Eurocrypt 15  | the exact rank (in theory)     | bounds (in practice)          |  |  |
|               | Efficient and tight solution   | Quite slow for large keys and |  |  |
| Pro 15        | for small keys                 | reasonable tightness          |  |  |
|               | Efficient and tight solution   | Quite slow for large keys and |  |  |
| FSE'15        | for small keys                 | reasonable tightness          |  |  |
|               | Efficient and tight solution   | Quite slow for large keys and |  |  |
| Asiacrypt' 15 | for small keys                 | reasonable tightness          |  |  |
| CT-RSA'17     | Efficient solution             | Loose bound, not exact rank   |  |  |
|               |                                | Expected value of the rank,   |  |  |
| CHES'17       | Really fast even for large key | not rank estimation           |  |  |
| This paper    |                                |                               |  |  |

| Method        | Pros                                                  | Cons                                               |  |  |
|---------------|-------------------------------------------------------|----------------------------------------------------|--|--|
| Eurocount'12  | First solution, can compute                           | Quite slow, quite loose                            |  |  |
| Luiocrypt 15  | the exact rank (in theory)                            | bounds (in practice)                               |  |  |
|               | Efficient and tight solution                          | Quite slow for large keys and                      |  |  |
| Pro 15        | for small keys                                        | reasonable tightness                               |  |  |
|               | Efficient and tight solution                          | Quite slow for large keys and                      |  |  |
| FSE'15        | for small keys                                        | reasonable tightness                               |  |  |
|               | Efficient and tight solution                          | Quite slow for large keys and                      |  |  |
| Asiacrypt' 15 | for small keys                                        | reasonable tightness                               |  |  |
| CT-RSA'17     | Efficient solution                                    | Loose bound, not exact rank                        |  |  |
| CHES'17       | Really fast even for large key                        | Expected value of the rank,<br>not rank estimation |  |  |
| This paper    | Fast, tight estimation of the rank even for large key | Less efficient than CHES'17                        |  |  |

## The histogram solution (FSE'15)

|           | k1     |          |     |         | $k_2$    |     |
|-----------|--------|----------|-----|---------|----------|-----|
| Candidate | Pr     | log      | bin | Pr      | log      | bin |
| 0         | 0.6643 | -0.5901  | 1   | 0.0012  | -9.7027  | 3   |
| 1         | 0.2588 | -1.9501  | 1   | 0.0011  | -9.8283  | 3   |
| 2         | 0.0313 | -4.9977  | 2   | 0.3588  | -1.4787  | 1   |
| 3         | 0.0412 | -4.6012  | 2   | 0.0713  | -3.8100  | 1   |
| 4         | 0.0001 | -13.2877 | 4   | 0.5643  | -0.8255  | 1   |
| 5         | 0.0020 | -8.9658  | 3   | 0.0012  | -9.7027  | 3   |
| 6         | 0.0013 | -9.5873  | 3   | 0.00005 | -14.2877 | 4   |
| 7         | 0.0010 | -9.9658  | 3   | 0.00205 | -8.9302  | 3   |



7

#### Mix result

Perform convolution of histogram

$$conv(h_1, h_2)[i] = \sum_{j=0}^{i} h_1[j]h_2[i-j]$$





Size of  $H_i$  grows

#### Limitation for larger keys

For large number of dimension we perform convolution on larger and larger histograms: could be costly.



Can the cost be linear in the number of subkeys?

**New solution** 

#### Keep the size of the histogram constant



#### Why does it work?

Similar to classical histogram solution we can keep track of the position (bin of the key)

Similar as dividing the number of bins by the number of subkeys

Convolution need equally bin sized histogram: need a balanced tree structure



Similar as doing classical histogram convolution with large bin

- But a better tracking of the estimation error
- $\nu$  : number of subkeys
- $\epsilon:$  size of bin /2

| Method           | error                                      | cost      |
|------------------|--------------------------------------------|-----------|
| Classical FSE'15 | $ u\epsilon$                               | quadratic |
| Reduced FSE'15   | $\nu^2 \epsilon$                           | linear    |
| Batching         | $(\nu + \log_2(\nu)\frac{\nu}{2})\epsilon$ | linear    |

# **Experimental results**

- ▶ Matlab implementation (limited to 1024-bit key)
- ▶ C implementation

Leakages: subkey+noise (S-box)

Size of subkey: 8-bit

Number of subkeys: 8-1024

Number of bins: tightness-efficiency parameter

#### Efficiency



Our solution has a complexity linear in the number of subkeys

#### Tightness



Works for very long key, with tightness damage

#### Tightness



Works for very long key, with tightness damage



Adapted number of bin to have similar tightness

### Similar tightness CHES'17



CHES'17 solution is not so tight (6 bits, and cannot be tightened) all solutions are efficient (< 0.1s)

## Conclusion

Trick for rank estimation for large keys

Tight and efficient method

#### **Conclusion & open problems**

Trick for rank estimation for large keys

- Tight and efficient method
- Limited to independent attack



# Thanks!

# Questions?

# Comments?