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Enough Not Enough side-channel
side-channel information, enough
information computational power

= direct recovery = enumeration

(attack) (attack)

ko ky ko kis
0X2a,0.125 | 0X23,0.128 | 0X10,0.325 0X45,0.347
0Xcd,0.100 0X51,0.045 0X01,0.204 0Xdc,0.210
0Xae,0.050 | 0X£f£f,0.035 | 0X13,0.036 0X83,0.151
0X63,0.025 0X2b,0.025 0X58,0.029 0X13,0.035

Not Enough side-channel
information, not enough
computational power
=>rank estimation
(key needed, evaluation)
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rank(k) = #{k*| Pr[k*|SCI] > Pr[k|SCI]}.

#{k*} > 2128

Divide-and-conquer approach on independent subkeys

Space carving {k*} into 3 parts:
< Pr[k|SCI] ? Pr[k|SCI] <

Smaller is the part ? the more accurate is the rank estimation 5
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Eurocrypt'13

Pro'15

FSE'15

Asiacrypt’ 15
CT-RSA'17

CHES'17

This paper

First solution, can compute
the exact rank (in theory)
Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient and tight solution
for small keys

Efficient solution

Really fast even for large key

Fast, tight estimation of the
rank even for large key

Quite loose

bounds (in practice)

slow, quite
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness
Quite slow for large keys and
reasonable tightness
Loose bound, not exact rank

Expected value of the rank,
not rank estimation

Less efficient than CHES'17
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Perform convolution of histogram

conv(hy, h)[i] = Z hi[j]hai — Jj]
=0

conv(hy, ha)

bin number
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Size of H; grows



For large number of dimension we perform convolution on larger and
larger histograms: could be costly.
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Can the cost be linear in the number of subkeys?

10



New solution




Keep the size of the histogram constant

batching(conv(hy, hz))
30

20

# keys

10

bin number
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Similar to classical histogram solution we can keep track of the position

(bin of the key)
Similar as dividing the number of bins by the number of subkeys

Convolution need equally bin sized histogram: need a balanced tree
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Similar as doing classical histogram convolution with large bin
But a better tracking of the estimation error
v . number of subkeys

e: size of bin /2

Method error cost
Classical FSE'15 ve quadratic
Reduced FSE'15 Ve linear
Batching (v +logy(v)5 e linear
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Experimental results




» Matlab implementation (limited to 1024-bit key)
» C implementation

Leakages: subkey+noise (S-bex)

Size of subkey: 8-bit

Number of subkeys: 8-1024

Number of bins: tightness-efficiency parameter
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Our solution has a complexity linear in the number of subkeys
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Adapted number of bin to have similar tightness
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CHES'17 solution is not so tight (6 bits, and cannot be tightened) all
solutions are efficient (< 0.1s)
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Conclusion




Trick for rank estimation for large keys

Tight and efficient method
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Trick for rank estimation for large keys
Tight and efficient method

Limited to independent attack

Prik,] ’ ‘ Prik,]
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Thanks!

Comments?

Questions?
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