
Security specifications for the

hardware / software interface
CARDIS 2018

Frank Piessens

Acknowledgments: research reported in this talk has been partially supported

by a gift from Intel Corporation and by the Research Fund KU Leuven

Introduction

› Micro-architectural attacks have come of age:

Meltdown breaks user/kernel isolation

Spectre breaks several isolation boundaries that software security fundamentally relies on

Foreshadow breaks SGX isolation

› Hardware and system software vendors are scrambling to address these attacks, but

focus is on short-term solutions.

E.g. from the conclusion of the Spectre paper:

“As a result, while the countermeasures described in the previous section may help limit practical

exploits in the short term, they are only stop-gap measures.”

2

References:

Paul Kocher et al. Spectre Attacks: Exploiting Speculative Execution, IEEE S&P 2019

Moritz Lipp et al. Meltdown: Reading Kernel Memory from User Space, USENIX Security Symposium 2018

Jo Van Bulck et al. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution, USENIX Security Symposium 2018

Introduction

› The core message of this talk:

These micro-architectural attacks matter across the computing

spectrum – also for smaller micro-processors

Long-term fundamental solutions need to rethink the hardware /

software interface

3

Outline of the rest of the talk

› Micro-architectural attacks

Attacker model

Side-channel attacks

Speculative execution attacks

Attacks on small processors

› Security specifications for the HW/SW interface

Current ISA specifications

Towards ISA security specifications

4

Attacker model: Shared platform attacker

› The attacker can run code on the same platform where victim

code is running.

› The objective of the attacker is to learn more about the victim than

what one can learn through intended communication interfaces.

5

Platform

Victim

Program

Attacker

Program

Shared Resources

controls

Micro-architectural attacks

› The attacker learns information by manipulating and

observing the victim program’s use of shared platform

resources such as the cache, the branch predictor, …

6

Platform

Victim

Program

Attacker

Program

Shared Resources

Micro-architectural attacks

› The attacker learns information by manipulating and

observing the victim program’s use of shared platform

resources such as the cache, the branch predictor, …

7

Platform

Victim

Program

Attacker

Program

Shared Resources

Classic side

channel attack

Micro-architectural attacks

› The attacker learns information by manipulating and

observing the victim program’s use of shared platform

resources such as the cache, the branch predictor, …

8

Platform

Victim

Program

Attacker

Program

Shared Resources

Classic side

channel attack

Amplified by controlling

the sending side

Outline of the rest of the talk

› Micro-architectural attacks

Attacker model

Side-channel attacks

Speculative execution attacks

Attacks on small processors

› Security specifications for the HW/SW interface

Current ISA specifications

Towards ISA security specifications

9

Side-channels: a simple example of a cache-attack

10

CPU

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

-

-

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of a cache-attack

11

CPU

0x12

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

0

1

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of a cache-attack

12

CPU

0x9A

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

4

1

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

Next the victim program runs and performs secret-

dependent memory accesses

…

if secret {

load address 4

}

else {

load address 5

}

…

Side-channels: a simple example of a cache-attack

› The shared resources between attacker and victim

program include a direct-mapped cache

First the attacker program runs and occupies the first two

cache lines

Next the victim program runs and performs secret-

dependent memory accesses

Finally the attacker program measures the duration of an

access to address 0

Long access time? Then secret is true, else false
13

CPU

0x9A

0x34

0x12

0x34

0x56

0x78

0x9A

0xBC

0xED

0xF0

0

1

2

3

4

1

-

-

4

5

6

7

cache

main memory

Attacker

Memory

Victim

Memory

Platform

Victim

Program

Attacker

Program

Shared Resources

…

if secret {

load address 4

}

else {

load address 5

}

…

Cache attacks

› Cache-based side-channel attacks have been understood for

quite a while

› Countermeasures exist:

At the hardware level, e.g. cache partitioning

At the software level, e.g. the crypto constant time model

14

Qian Ge, Yuval Yarom, David Cock, Gernot Heiser: A survey of microarchitectural timing

attacks and countermeasures on contemporary hardware. J. Cryptographic Engineering (2018)

Outline of the rest of the talk

› Micro-architectural attacks

Attacker model

Side-channel attacks

Speculative execution attacks

Attacks on small processors

› Security specifications for the HW/SW interface

Current ISA specifications

Towards ISA security specifications

15

Speculative execution attacks

› Speculative execution attacks amplify the impact of existing side-

channels by giving the attacker control over the sending side of the

channel too

› The key observations are:

Processors are pipelined and sometimes execute instructions speculatively

No architectural effects are visible until instruction is committed

Speculatively executed instructions also impact the micro-architectural state

The attacker can influence what instructions get executed speculatively

16

Speculative execution

› All major processors support

speculative execution

Processor implementations are pipelined

To keep the hardware busy, instructions

are executed out-of-order and

speculatively

No visible architectural effects of

speculatively executed instructions – but

there are persistent micro-architectural

effects

17

A simple example of a speculative execution attack

18

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

19

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

Branch predictor

learns that usually

then branch is

taken

A simple example of a speculative execution attack

20

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

21

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

22

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

23

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

CPU speculatively

executes the then

branch

A simple example of a speculative execution attack

24

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

A simple example of a speculative execution attack

25

cache

attacker memory

3

victim memory

array a

array b

void process(int i) {

int y;

if (i < 2) y = b[pub[i]];

}

array pub

SECRET

// train the branch predictor

process(0); process(0); …

// prime the cache

for (j=0; j<4; j++) z = a[j];

// attack!

process(2);

// measure access time to a[j] for all j

// slowest j is the SECRET

attacker code

victim code

Speculative execution attacks

› This was a simplified Spectre Variant 1 attack

Many other variants exist

Meltdown/Foreshadow style attacks are similar but rely on the micro-

architectural effects of out-of-order code execution that leads to an

access control exception

› Note the devastating nature of this kind of attack on any

kind of software-enforced confidentiality

26

Outline of the rest of the talk

› Micro-architectural attacks

Attacker model

Side-channel attacks

Speculative execution attacks

Attacks on small processors

› Security specifications for the HW/SW interface

Current ISA specifications

Towards ISA security specifications

27

What about small micro-processors?

› Are micro-architectural attacks relevant for small micro-

processors that do not have advanced micro-architectural

features?

› Somewhat surprisingly, the answer is yes

28

Nemesis attack: exploiting rudimentary CPU interrupt

logic
› Nemesis is a very recent attack

Jo Van Bulck, Frank Piessens, Raoul Strackx: Nemesis: Studying Microarchitectural Timing Leaks

in Rudimentary CPU Interrupt Logic. ACM CCS 2018

› Nemesis performs measurements on the micro-architectural state by measuring

interrupt latency

On small embedded platforms, this can leak information on the instruction that was interrupted, and

hence on control flow

I will illustrate this on Sancus, an embedded IoT security architecture

On large processors, this is an instruction-granular measurement of the CPU's micro-architectural

state, where the instruction opcode is only one of many aspects that influence the latency

See the paper for details

29

Sancus 2.0

› A small microprocessor (based on TI MSP430) with support for:

Protected software modules (somewhat like enclaves or TEE’s)

Remote attestation, authentication and secure communication between

modules (not discussed in this talk)

More details in:

Noorman, et al. : Sancus 2.0: A Low-Cost Security Architecture for IoT

Devices. ACM TOPS, 2017

Noorman, et al. : Sancus: Low-cost Trustworthy Extensible Networked Devices

with a Zero-software Trusted Computing Base. USENIX Security 2013

30

Sancus memory isolation

31

Attacker should not learn more than what can be

learned from calling entry points.

› Attacker can:

Call any entry point with

parameters of the attackers

choice

Inspect return values

Time the duration of calls

32

void entry() {

…

if secret {

…

}

else {

…

}

…

return;

}

Victim code

The rudimentary CPU Interrupt logic …

33

… and how it leaks information

34

…

if secret {

ADD @R5+,R6 // 2 cycles

}

else {

NOP; NOP // 2 x 1 cycle

}

…

See the paper for more information

› Case studies showing how to use this attack on Sancus to

Extract a password from a bootstrap loader

Extract a PIN from a secure keypad

› An extension of the attack to larger processors:

Where each interrupt latency measurement is an instruction-granular

measurement of the micro-architectural state

A case study attacking privacy-sensitive data analytics in SGX

35

Conclusions

› Software-based micro-architectural side-channel attacks

Are realistic threats

Can be launched against a wide variety of platforms

Are hard to protect against without paying in performance

Break many software-based security measures

› Research is needed on adequate defenses

Probably hardware/software co-designs

Likely to require Instruction Set Architecture changes

Not only specify functionality of the ISA

But also specify security properties of the ISA

36

Outline of the rest of the talk

› Micro-architectural attacks

Attacker model

Side-channel attacks

Speculative execution attacks

Attacks on small processors

› Security specifications for the HW/SW interface

Current ISA specifications

Towards ISA security specifications

37

Current ISA specifications

› Current ISA specifications specify:

Architecturally visible state

Registers, memory

Instruction encodings

Functional behavior of instructions

Usually a (partial) function from ISA state to ISA state

› Specification non-determinism is common:

E.g. “Writes to instruction memory are not guaranteed to be visible to instruction fetches until a

FENCE.I instruction is executed”

E.g. “RDTIME counts wall-clock real time that has passed from an arbitrary start time in the past”

38

The form of ISA specifications

› ISA specifications exist in many forms:

A specification document, using rigorous natural language and

pseudocode

A test suite that can be used to test compliance with the spec

A simulator or a model implementation of the spec

…

39

When is an implementation compliant?

› ISA implementations are compliant if they functionally behave as

specified

Test suites, designed to be free of assumptions on implementation-defined

refinement of non-determinism in the specification

› This has been great for realizing software portability

› However, it is insufficient for ensuring security properties of software

It is perfectly possible to have two compliant implementations, one that is

vulnerable to SPECTRE attacks, and one that is not.

40

Outline of the rest of the talk

› Micro-architectural attacks

Attacker model

Side-channel attacks

Speculative execution attacks

Attacks on small processors

› Security specifications for the HW/SW interface

Current ISA specifications

Towards ISA security specifications

41

Towards security specifications of ISAs

› (System) software developers need more guarantees from

the ISA for security purposes

It should be possible to write software such that its execution on any

compliant ISA implementation is secure

› Hence, there is a need to extend the ISA specification for the

purposes of security

42

What should these security specs look like?

› There is no clear answer yet, some directions:

Much more detailed specs, including timing specification

But such specs would necessarily apply to only a small set of processors

New instructions that influence the micro-architectural state

But it seems that these are hard to use correctly

Information flow specifications

Either requiring programmer input on security labels

Or very conservative, but hence hard to implement with good performance

43

Conclusions

› This new class of attacks compromises the foundations of a

wide range of security mechanisms

All software based confidentiality countermeasures are affected

› Current mitigations are ad-hoc and sometimes costly

› It is likely that good solutions will require collaboration across

abstraction layers, including across the HW/SW boundary

44

