Improving Side-channel Analysis though Semi-supervised Learning

Stjepan Picek¹ Annelie Heuser² Alan Jovic³ Karlo Knezevic³ <u>Tania Richmond</u>² Axel Legay⁴

¹ Delft University of Technology, Delft, The Netherlands

- ² Univ Rennes, Inria, CNRS, IRISA, France
- ³ University of Zagreb Faculty of Electrical Engineering and Computing, Croatia

⁴ UCLouvain, Belgium

- 1. Profiled side-channel analysis
- 2. Semi-supervised leaning in profiled SCA
- 3. Experimental validation
- 4. Conclusion

Profiled side-channel analysis

Notations and Terminology

traces = measurements, features = points in time/interest

<u>classifier</u> = distinguisher = attack

E.g. Template attack, SVM attack

label = class = intermediate value = leakage model
E.g.: SBox(plaintext ⊕ key), HW(SBox(plaintext ⊕ key))

Classifiers used in this work (1/2)

- Template attack:
 - profiling phase: estimate multivariate Gaussian distribution \Rightarrow mean vector and covariance matrices for each label
 - attacking phase: given an unseen sample evaluate probability distribution
- Template attack pooled version:
 - profiling phase: estimate multivariate Gaussian distribution \Rightarrow mean vector for each label, and one covariance matrix
 - attacking phase: given an unseen sample evaluate probability distribution

Classifiers used in this work (2/2)

- Naive Bayes
 - profiling phase: estimate probability distribution assuming it is Gaussian and univariate ⇒ mean value and variance for each feature and label
 - attacking phase: given an unseen sample evaluate probability distribution
- Support vector machines (SVM)
 - profiling phase: estimate hyperplane seperations between labels
 - attacking phase: evaluate one which side of the hyperplanes the unseen lies

Profiled side-channel analysis

Profiling phase

- Input: traces and known labels
- Output: profiled model

Attacking phase

- Input: traces, profiled model, hypothetical labels
- Output: secret value

- Traditional setup: only information transferred between phases is the profiled model
- If profiling phase is *unlimited* traditional setup reasonable, since profiling phase should yield 'optimal' result
- If attacker is more *restricted* in resources, why relying on strict separation between phases?

Semi-supervised leaning in profiled SCA

Semi-supervised leaning in profiled SCA

Profiling phase

- Input: traces, known labels, traces
 - (attack), predicted labels (attack)
- Output: profiled model

Attacking phase

- Input: traces, profiled model, hypothetical labels
- Output: secret value

Semi-supervised leaning in profiled SCA

Suitable

- Attacker has limited/restricted resources
 - device on which he has full knowledge: only a limited amount of profiling data
 - device with secret values: ability to gain more or equal amount of data
- Noise level is reasonably low (reasonably needs to be evaluated)

Advantages

- Additional information about leakage distribution (in the attacking phase)
- $\cdot \Rightarrow$ more accurate prediction about labels in attacking phase

Disadvantages/Limitations

• May introduce wrongly predicted labels and therefore misclassification

Semi-supervised learning

Why helpful?

- Intuitive simplified example
- · Decision boundary enhanced through unlabeled data

When is it advantageous to consider unlabeled data?

- $\cdot \Rightarrow$ Distribution of data samples is of importance, and certain assumptions should hold
- Two main important assumptions in semi-supervised learning:
 - Smoothness assumption
 - Manifold assumption
- If one assumption is valid, then specific semi-supervised labeling techniques are exploitable

Semi-supervised smoothness assumption

- If two points x_1, x_2 in a high-density region are close, than their labels y_1, y_2 should be close
- Accordingly, if they are separated by a low-density region, then their labels do not need to be close
- Note that, similar assumptions also need to hold for supervised learning
- Should generally hold in SCA: measurements are related to the activity of device (labels)

Manifold assumption

- The (high-dimensional) data lie (roughly) in a low-dimensional manifold
- Classifier is then able to operate on the corresponding low dimension and seperate data belowing to a manifold
- Should generally hold in SCA: features/points in trace typically have dependencies between each other ⇒ lower dimensional manifold than in dimension # of features

How to predict labels of unlabeled data?

Two common prediction algorithms for semi-supervised learning:

- Self-training of a classifier
- Graph-based learning with label spreading

... many more out there, active reasearch direction in machine learning.

Machine learning tools for label predication

Self-training of a classifier with added threshold value

Idea

- 1. Train classifier on labeled data
- 2. Predict unlabeled data
- 3. if probability of prediction is \geq threshold value:
 - \cdot add label to data
 - \cdot else keep it unlabeled
- 4. Repeat from 1 until classification accuracy decreases, or no samples exists with probability \geq threshold

Drawbacks

- Depends on classifier
- Possible mistakes reinforce themselves, noise amplifies

Machine learning tools for label predication

Self-training of a classifier with added threshold value

Idea

- 1. Train classifier on labeled data
- 2. Predict unlabeled data
- 3. if probability of prediction is \geq threshold value:
 - \cdot add label to data
 - \cdot else keep it unlabeled
- 4. Repeat from 1 until classification accuracy decreases, or no samples exists with probability \geq threshold

In our experiments, classifier:

- SVM: relies on manifold assumption
- Naive Bayes: relies on smoothness assumption

Machine learning tools for label predication

Graph-based learning using label spreading

Idea

- Represent data as a graph
- Vertices are traces: labeled if exists, otherwise unlabeled
- Edges are labeled with distances of neighbor nodes (euclidean distance)
- Idea:
 - \cdot Vertix labels propagate through graph
 - *k*-NN neighbors as a technique to assign labels
- Depends on the manifold assumption

Drawback

• Data should be represenable in a graph structure/ problem if graph does not fit the task

Experimental validation

	labeled	unlabeled
	100	12 900
	250	12 750
	500	12 500
• Scenarios:	1000	12 000
	3000	10000
	5000	8 000
	7 0 0 0	6 0 0 0
	10000	3 000

- Dataset: Dpav4 contest (turned into unmasked scenario), in paper additionally Dpav2 contest (very noisy/ usual drifting noise)
- Results given in accuracy: percentage of correctly classified labels in the attacking set

Experimental validation

- Classifiers:
 - Naïve Bayes (Bayes theorem, independent points of interest)
 - Support vector machine (hyperplane classification)
 - Template attack (Bayes theorem, dependent points of interest)
 - Template attack pooled (only one covariance matrix for all label classes)
- Leakage model: S-box output (256 classes), Hamming weight of S-box output (9 classes)
- Self-learning uses Naive Bayes and SVM (RBF kernel) as a classifier

- DPAv4 contest, 9 classes
- · Accuracy: supervised | self-learning | label spreading

Size		TA			TAp	
100/+12.9k	0.3	58.9	18.8	45.4	67.6	21.1
250/+12.75k	0.3	12.6	61.4	53	75.2	71.3
500/+12.5k	0.3	56.6	58.8	68.9	76.9	74.5
1k/+12k	1.3	44.2	7.1	73.1	78.3	76.6
3k/+10k	5.2	53	66.6	74.9	78.1	77.4
5k/+8k	2.8	46.4	3.2	75.8	78.4	78
7k/+6k	11.2	75.6	14.8	76.5	78	77.9
10k/+3k	0.4	73.8	49.6	77.2	77.9	78
13k	75.3			77.7		

- DPAv4 contest, 9 classes
- · Accuracy: supervised | self-learning | label spreading

Size	NB			SVM		
100/+12.9k	61.5	59	30	69.1	69	25
250/+12.75k	64.3	64.6	65.3	78.4	78.2	77.5
500/+12.5k	65.9	66.2	65.5	82.7	82.8	81.1
1k/+12k	64.8	68.1	67.7	86.6	87.1	84.1
3k/+10k	67.2	68.3	68.7	90.8	90.5	91.8
5k/+8k	67.9	68.1	68.8	92	92.3	91.8
7k/+6k	68	68.4	68.6	92.8	92.7	92.5
10k/+3k	68.1	68.7	68.7	93.3	93.6	93.5
13k	68.4			93.7		

- DPAv4 contest, 256 classes
- · Accuracy: supervised | self-learning | label spreading

Size	ТА				TAp		
100/+12.9k	0.3	0.3	0.3	0.4	3.4	2.6	
250/+12.75k	0.3	0.3	0.3	3.3	3.7	3.5	
500/+12.5k	0.4	0.5	0.4	6.4	7.1	7	
1k/+12k	0.4	0.5	0.4	10.2	9.5	9	
3k/+10k	0.1	0.4	0.3	16.3	15.5	14.8	
5k/+8k	0.2	0.1	0.1	19.2	18.7	17.2	
7k/+6k	0.3	0.1	0.1	20.6	21	20.1	
10k/+3k	0	0.2	0.2	22.5	22.4	21.9	
13k	0.1			23.7			

- DPAv4 contest, 256 classes
- · Accuracy: supervised | self-learning | label spreading

Size	NB			SVM		
100/+12.9k	1.5	2.7	1.7	5.1	4.2	3.7
250/+12.75k	2.2	3.1	3	6.8	6.4	6.1
500/+12.5k	4.9	5.7	5.7	10.3	8.5	7.9
1k/+12k	10.5	9.3	8.5	13.6	12.8	11
3k/+10k	16.5	15.6	15	22.4	21.7	18.7
5k/+8k	18	17.3	16	27.4	25.7	24.8
7k/+6k	19.5	18.4	17	30	29	26.9
10k/+3k	20.1	19.6	18.1	33.3	32.8	28.8
13k	20.2			34.9		

Conclusion

Conclusion

- Explored the concept of semi-supervised learning when the attacker is 'restricted' (not unlimited power) in the profiling phase
- Self-learning and label spreading was used in our experiments
- For DPAcontest v4 (low noise scenario) we observed:
 - Semi-supervised learning helped mostly throughout all classifiers for 9 classes
 - Semi-supervised learning for 256 classes mostly failed (for accuracy, maybe advantages in guessing entropy?)
 - \cdot Self-learning more advantageous than label spreading
 - Biggest advantage for template attack
- In paper: also DPAcontest v2, unusual noise scenario, naturally here semi-supervised learning did not help the attacker
- In final version:
 - Comparison using guessing entropy
 - Additional two datasets: medium/high noise, random delay countermeasure

Questions?