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Introduction
Side-Channel Attacks (SCA)

Side-Channel Attacks (SCA)

First introduced in 1996

Exploit intermediate value correlated leakage (passively)

Recover secret information of hardware implementations

Of low cost, yet big threats to cryptographic implementations
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Introduction
Profiled Side-Channel Attacks

Profiled SCA

Profiling Phase: perform
leakage characterization with
known ciphertext/plaintext
and known keys

Attack Phase: recover
secrets within the target
device using profiled leakage
characterization

In this way, the WORST CASE SECURITY of cryptographic
implementations is examined.
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Introduction
Profiled Side-Channel Attacks

Notation

x: side-channel leakage observables (e.g. Power, EM)

v: sensitive variable (v = f (p, k))

Goal: given x, estimate v

Profiling: Build models to accurately estimate prior probability
Pr[xi|v = vi ]
Attack: Calculate posterior probabilities among k guesses using Bayes
theorem and Maximum Likelihood Criterion

dk =
M∏
i=1

Pr[vi = f (ti , k)|x = xi ]

=
M∏
i=1

Pr[x = xi |vi = f (ti , k)] · Pr[vi = f (ti , k)]

Pr[x = xi ]

Yang, Li, Ming, Zhou (IIE) CNN based SCA in Time-Frequency RepresentationsNovember 12, CARDIS 2018 6 / 39



Introduction
Profiled Side-Channel Attacks

Notation

x: side-channel leakage observables (e.g. Power, EM)

v: sensitive variable (v = f (p, k))

Goal: given x, estimate v

Profiling: Build models to accurately estimate prior probability
Pr[xi|v = vi ]
Attack: Calculate posterior probabilities among k guesses using Bayes
theorem and Maximum Likelihood Criterion

dk =
M∏
i=1

Pr[vi = f (ti , k)|x = xi ]

=
M∏
i=1

Pr[x = xi |vi = f (ti , k)] · Pr[vi = f (ti , k)]

Pr[x = xi ]

Yang, Li, Ming, Zhou (IIE) CNN based SCA in Time-Frequency RepresentationsNovember 12, CARDIS 2018 6 / 39



Introduction
Profiled Side-Channel Attacks

Notation

x: side-channel leakage observables (e.g. Power, EM)

v: sensitive variable (v = f (p, k))

Goal: given x, estimate v

Profiling: Build models to accurately estimate prior probability
Pr[xi|v = vi ]
Attack: Calculate posterior probabilities among k guesses using Bayes
theorem and Maximum Likelihood Criterion

dk =
M∏
i=1

Pr[vi = f (ti , k)|x = xi ]

=
M∏
i=1

Pr[x = xi |vi = f (ti , k)] · Pr[vi = f (ti , k)]

Pr[x = xi ]

Yang, Li, Ming, Zhou (IIE) CNN based SCA in Time-Frequency RepresentationsNovember 12, CARDIS 2018 6 / 39



Introduction
Profiled Side-Channel Attacks

State-of-the-art Profiled Attack Techniques:

Template Attacks and Stochastic Model

Machine learning (e.g. SVM, Random Forest) and deep learning (e.g.
CNN, MLP) based attacks

Template Attacks
Pros:

Theoretically perfect

Robust and explainable

Cons:

Dependency of preprocessing

Numerical problems

Curse of dimensionality

Deep Learning Techniques
Pros:

Dependency of preprocessing

Numerical problems

Curse of dimensionality

High-order analysis

Cons:

More traces needed!
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Introduction
Signal Representations in SCA

SCA in time domain

Easy to deploy

On raw traces, no information
loss in preprocessing ideally

SCA in frequency domain

Fourier transform needed

Suitable for misaligned traces

Time information is lost

In practice, most profiled attacks are performed on time domain, in which
some frequency related leakage may lose...
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Related Work
Time-Frequency Representation of Signals

Spectrogram is widely used for signal processing, e.g. speech processing,
sonar and radar.

Figure: A boat whistle signal and its time-frequency representation

In the field of SCA, short-time Fourier transform or Wavelet transform is
used as preprocessing method in non-profiled attacks (e.g. CPA)
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Related Work
Deep Learning based Side-Channel Attacks

A Review of deep learning based side-channel attacks...

[MPP16] First using Convolutional Neural Networks (CNN) into SCA

[CDP17] Introduction of CNN to analyse mis-alignment traces /
Providing data augmentation methods

[Pro+18] A detailed study of deep learning hyper-parameters for SCA

These works mainly focus SCA on time domain, what about the
leakage information in frequency domain?

Our Purpose

Following the line of deep learning based attacks,

Solve masking/mis-alignment problems [MPP16; CDP17; Pro+18]

and bring new features:

Time-frequency analysis (ours)
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Our Method
Main Idea

We use short-time Fourier transform (STFT) to generate 2D
spectrograms, instead of 1D traces, as the input of profiled attacks.
We intend to make the most of CNN to exploit local time-frequency
leakage information, just like recognizing dogs in an image.

Figure: Classification problem of dogs
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Our Method
Main Idea

Let’s first see what is spectrogram and how’s the leakage in spectrograms.
Then I’ll introduce how we ultilize 2D CNN to exploit the local
time-frequency leakages in spectrograms.
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Our Method
Leakages in Spectrograms

Definition

A spectrogram is a visual way of representing the signal strength of a
signal over time at various frequencies present in a particular waveform.

It’s the magnitude of STFT

Two axes: time and frequency. The value is magnitude of a particular
frequency at a particular time

Usually shown in the form of a heatmap
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Our Method
Leakages in Spectrograms

How do we turn traces into spectrograms?

Step 1: Perform short-time
Fourier transform on traces

STFT{x [n]}(m, ω) ≡ X (m, ω)

=
∞∑

n=−∞
x [n]w [n −mH]e−jωn

Step 2: Calculate the magnitude
of STFT

spectrogram{x [n]}(m, ω) ≡ |X (m, ω)|2
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Our Method
Leakages in Spectrograms

We can perform leakage detection on spectrograms and show the results in
heatmaps.

Pearson Correlation
Coefficient: ρx ,v = cov(x ,v)

σx ·σv
Trace: correlation coefficient
peak value is 0.539
Spectrogram: correlation
coefficient peak value is 0.626

Signal Noise Ratio (SNR):
snrx ,v = Var[E[x |v ]]/E[Var[x |v ]]

Trace: SNR peak value is
1.781
Spectrogram: SNR peak value
is 5.878
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Our Method
Leakages in Spectrograms

POI appear in clusters and have certain 2D pattern features. Better
find a new way to analyse the feature of this pattern, otherwise POI
selection would destroy the spacial relationship.

Figure: Enlarged partial detail of POI region in spectrogram
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Our Method
How to Use Convolutional Neural Networks (CNN) Exploit Leakages

A 2D CNN is composed of two parts:

Feature extraction: convolutional layer, pooling layer
Classification: fully connected layer

The former part is used to extract local time-frequency leakage
information, and the latter part is used to make classification.

Figure: Basic CNN architecture
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Our Method
How to Use Convolutional Neural Networks (CNN) Exploit Leakages

Convolutional Layer

It is locally connected with shared weights in learnable kernels. It helps
recognizing local time-frequency patterns.

Figure: Convolution details
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Our Method
How to Use Convolutional Neural Networks (CNN) Exploit Leakages

Pooling Layer

It performs the downsampled operations to extract time-frequency features
and discard unnecessary details.

Figure: Max-pooling details
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Our Method
Convolutional Neural Networks (CNN)

Fully Connected Layer

Each neural is connected to the next layer with trainable weights. It helps
combining features and making classification.

Figure: Fully connected layer details
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Experiments
Setup of Spectrogram Parameters

Spectrogram Parameters

Window type: Hanning window

Window overlap: 90%

Window size:

Small window size: coarse frequency resolution, but good time
resolution
Large window size: good frequency resolution, but coarse time
resolution

To find proper STFT window size, 10-fold cross validation is performed...
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Experiments
Setup of Spectrogram Parameters

10-Fold Cross Validation to Evaluate the STFT Window Size

Split profiling set, 9 folds as training set, 1 fold as validation set

Iteratively train 10 times, calculate GE, SR on each validation set

Calculate average metrics
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Experiments
Setup of Spectrogram Parameters

Experiments on 3 public datasets

DPA contest V4.1 (DPAv4.1)
Atmel ATMega-163 smart-card, AES-256
About 125 sample points per clock
Sbox out XOR mask,V = Sbox[P ⊕ k∗]⊕M
Profiling set: 9000, attack set: 1000

Grizzly
8-bit CPU Atmel XMEGA 256 A3U
About 1000 sample points per clock
Given label V, could be seen as Sbox out
Profiling set: 51200, attack set: 10000

DPA contest V2 (DPAv2)
SASEBO GII FPGA, AES-128
About 213 sample points per clock
Sbox in XOR Sbox out, V = Sbox−1[C1 ⊕ k∗]⊕ C2

Profiling set: 90000, attack set: 10000
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Experiments
Setup of Spectrogram Parameters

DPAv4.1 Window Size Cross Validation Results

Time: 3 hours (3 minutes per single training)

Configuration: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz CPU,
2 NVIDIA Titan Xp GPUs

Window@percentage Spc size Loss Acc Top3 Acc GE<1 SR>80%

DPAv4.1

8@1/16 (4,494) 0.159 95.3% 99.6% 1 1
16@1/8 (8,243) 0.168 94.9% 99.7% 1 1
32@1/4 (16,181) 0.153 95.2% 99.7% 1 1
64@1/2 (32,63) 0.142 95.9% 99.7% 1 1
125@1 (63,29) 0.199 94.1% 99.6% 1 1

187@3/2 (94,17) 0.195 94.5% 99.5% 1 1

Best STFT window size is 64 (1/2 of a clock) points.
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Experiments
Setup of Spectrogram Parameters

Grizzly Window Size Cross Validation Results

Time: 6 hours (6 minutes per single training)

Configuration: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz CPU,
2 NVIDIA Titan Xp GPUs

Window@percentage Spc size Loss Acc Top3 Acc GE<1 SR>80%

Grizzly

62@1/16 (32,349) 4.08 6.56% 16.86% 5 5
125@1/8 (63,183) 3.74 8.49% 21.28% 3 4
250@1/4 (126,91) 3.76 8.28% 21.07% 3 4
500@1/2 (251,41) 5.00 2.95% 7.40% >10 >10
1000@1 (501,16) 5.51 0.5% 1.53% >10 >10

Best STFT window size is 125 (1/8 of a clock) points.
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Experiments
Setup of Spectrogram Parameters

DPAv2 Window Size Cross Validation Results

Time: 8 hours (8 minutes per single training)

Configuration: Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20GHz CPU,
2 NVIDIA Titan Xp GPUs

Window@percentage Spc size Loss Acc Top3 Acc GE<1 SR>80%

DPAv2

12@1/16 (6,495) 5.544 0.43% 1.29% >1500 >1500
25@1/8 (12,326) 5.544 0.43% 1.30% >1500 >1500
50@1/4 (25,191) 5.536 0.62% 1.63% 750 750

100@1/2 (50,91) 5.536 0.65% 1.67% 700 700
200@1 (100,41) 5.538 0.60% 1.58% 950 900

300@3/2 (300,48) 5.538 0.63% 1.60% 950 950

Best STFT window size is 100 (1/2 of a clock) points.
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Experiments
Spectrogram Parameters

Experimental Conclusion

Choice of imbalanced spectrogram size usually results in training
failure

The window size 64, 128, 256 suits most case in our experiments

An Example on Grizzly

Trace length 2500, STFT window size 1000

Spectrogram size 501× 16

After 4 CONV and Pooling layers

Feature map size 32× 1 (redundant frequency information but
exhausted temporal information)
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Experiments
Comparison of Attack Results

We compare the efficiency of TA and CNN based attacks on traces and
spectrograms.
Targets

DPAv4.1, 9000 traces for profiling, 1000 traces for attack

Grizzly, 51200 traces for profiling, 10000 traces for attack

DPAv2, 90000 traces for profilng, 10000 traces for attack

Profiling Methods

CNN: VGG-like architecture (detailed in paper)

ETA: Efficient Template Attack with POI selection

PCA-ETA: Efficient Template Attack with PCA dimension reduction

Signal Representations

Trc: 1D raw trace

Spc: 2D spectrogram
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Experiments
Comparison of Attack Results

Table: Attack results of our method and baseline methods.

Method
DPAv4.1 Grizzly DPAv2

Acc GE<1 SR>0.8 Acc GE<1 SR>0.8 Acc GE<1 SR>0.8

Spc

CNN 95.5% 1 1 8.47% 3 4 0.82% 400 550
ETA,5poi 15.0% 4 3 2.46% 7 5 0.67% 600 550

ETA,25poi 58.4% 2 2 2.85% 6 6 0.61% 650 750
ETA,50poi 82.5% 1 1 3.64% 5 5 0.65% 1000 1050
PCA-ETA 82.5% 1 1 5.75% 5 4 0.59% 650 650

Trc

CNN 96.5% 1 1 9.52% 3 4 0.63% 750 650
ETA,5poi 1.9% 9 7 2.08% 8 7 0.59% 1500 1500

ETA,25poi 32.1% 2 2 2.76% 7 6 0.61% 950 1000
ETA,50poi 63.5% 2 2 2.59% 7 6 0.57% 750 850
PCA-ETA 86.9% 1 1 4.48% 6 5 0.60% 850 750
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Conclusion

Leakage in time-frequency 2D patterns can be ultilized simutaneously
with the help of 2D CNN.

2D CNN extracts features by recognizing local time-frequency pattern
(natural tool to block irrelevant time-frequency area without POI
selection). In contrast, TA is unable to process spacial relations.

Proper STFT window size helps training 2D CNN model.

CNN based SCA in time-frequency representations provides an
alternative way for deep learning based attacks.

Future works

The performance of 2D CNN based profiled attacks in the presence of
masking and hiding?
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Questions

Thank you! Any questions?
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