Jitter Estimation with High Accuracy for Oscillator-Based TRNGs

Shaofeng Zhu, Hua Chen, Linmin Fan, Meihui Chen, Wei Xi, Dengguo Feng

TCA Laboratory, Institute of Software, Chinese Academy of Sciences

November 13, 2018

Introduction

Preliminaries: Signal Model, Entropy Evaluation, Jitter Estimation

Jitter Estimation with High Accuracy

Jitter Estimation on FPGA

Comparisons and Conclusion

Random Numbers and TRNGs

TCA

Random Numbers

- Applications in cryptography: secret keys, IVs, paddings, nonces, random masks for countermeasure, etc..
- Properties: good statistical properties, unpredictability.
- True Random Number Generators (TRNGs)
 - Digitization of random physical phenomenon (jitter, chaos, metastability, etc.) or random events (keystrokes, etc.).
 - Can generate random numbers with unpredictability.

Are the TRNGs secure for applications ?

To evaluate the TRNGs

- Statistical Tests
 - NIST SP800-22¹, Diehard², etc..
 - Only test the statistical properties, but not the unpredictability.
- Entropy Evaluation: to quantitatively measure the unpredictability.
 - Based on output sequence: NIST SP800-90B³.
 When pseudo-randomness is mixed in the output sequence, overestimation of the entropy may happen.
 - Based on the model of random signals of the TRNGs

²George Marsaglia. "The Marsaglia random number CDROM including the DIEHARD battery of tests of randomness". In: *Diehard Tests* (1995).

¹Andrew Rukhin et al. NIST SP800-22: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.

³Meltem Sonmez Turan et al. NIST SP800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation. 🖹 🕨 🗸 🚍 🕨

Ring Oscillator-based TRNGs

Advantages

Easy to implement on logic device, resource-saving, etc..

Structure

- Noises on logic devices
 - Uncorrelated random noise (mainly thermal noise)
 - Correlated random noise (mainly low-frequency flicker noise)
- Source of the Randomness Jitter: the STD⁴ of the periods, will be accumulated in the sampling interval

Components: thermal jitter and flicker jitter

⁴standard deviation

Related Works on Jitter Estimation

External estimation

- Measuring equipments such as oscilloscopes.
- Additional jitter from Input/Output circuits and pins
- Internal estimation–Valtchanov et al.⁵
 - Counter-based jitter estimation-counting rising edges of S_o in fixed intervals.
 - Accumulated jitter \approx the STD of the number of rising edges
 - Approximate estimation with quantization
- Improvement of Ma et al.⁶ (CHES'2014)
 - Count both the rising and falling edges of S_o
 - Actually reduces the quantization step size by half

⁵Boyan Valtchanov et al. "Modeling and observing the jitter in ring oscillators implemented in FPGAs". In: *DDECS*. 2008.

Related Works on Jitter Estimation

► Fischer et al.⁷ (CHES'2014)

- Based on Monte Carlo method
- Estimation error is smaller than 5% in simulation.
- $\hfill\square$ The above mentioned methods actually estimate the total jitter.
- ► Haddad et al.⁸: jitter separating approach
 - To gain the ratio of thermal jitter in the total jitter
 - Also use a counter-based method to estimate the total jitter

⁸Patrick Haddad et al. "On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models". In: DATE. 2014, postnote.

⁷Viktor Fischer and David Lubicz. "Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG". In: CHES. 2014, postnote.

- Overestimation of jitter will result in the overestimation of the randomness-serious problem!
- Error (quantization error) will be introduced in previous counter-based jitter estimation methods. It will cause the overestimation of the jitter.
- Jitter estimation should be efficient when implemented on-line .

Introduction

Preliminaries: Signal Model, Entropy Evaluation, Jitter Estimation

Jitter Estimation with High Accuracy

Jitter Estimation on FPGA

Comparisons and Conclusion

Signal Model

Notions in the signal model

- The edge intervals of S_o , $T_{o1} \cdots T_{oj} \cdots T_{ok}$ has mean μ_o and standard deviation σ_o ; μ_o : half mean period of S_o ; σ_o : half period jitter of S_o , will be accumulated in T_s .
- *T_s* is stable.
- The waiting time $W \sim oldsymbol{U}(0,\mu_o)^9$, and is independent from the current $\mathcal{T}_s.$

⁹ Wolfgang Killmann and Werner Schindler. "A Design for a Physical RNG with Robust Entropy Estimators" (In CHES)2008. 🖹 + (🖹 +) 📜 🕫 🤇 🔇

Signal Model

Normalization

•
$$T_s \rightarrow t_s = \frac{T_s}{\mu_o}, T_{oj} \rightarrow t_{oj} = \frac{T_{oj}}{\mu_o}, \sigma_o \rightarrow \sigma = \frac{\sigma_o}{\mu_o}, \mu_o \rightarrow 1, W \rightarrow w = \frac{W}{\mu_o}.$$

- The μ_o can be measured from the frequency of S_o .
- Equivalent signal model

- Edge interval t_{oj} is stable, $t_{o1} = \cdots = t_{oj} = \cdots = 1$.
- t_s has mean value μ_s and standard deviation σ_s ; σ_s : total jitter=(thermal+flicker) jitter, $\sigma_s^2 = (\sigma_s^{th})^2 + (\sigma_s^{fl})^2$.
- $w \sim \boldsymbol{U}(0,1)$ and is independent from the current t_s .

▲□→ ▲圖→ ▲道

Entropy Evaluation

Assumptions

- 1. Only the uncorrelated thermal noise is taken into account.
- 2. Edge intervals $T_{o1} \cdots T_{oj} \cdots T_{ok} \sim N(\mu_o, \sigma_o^2)$
- 3. $t_s \sim N(\mu_s, (\sigma_s^{th})^2)$
- Lower bound of the entropy, contributed by the thermal noise¹⁰

$$H_{min} = 1 - \frac{4}{\pi^2 \ln(2)} e^{-\pi^2 (\sigma_s^{th})^2}.$$
 (1)

▶ H_{min} is determined by σ_s^{th} , precisely estimating σ_s^{th} is important!

¹⁰ Mathieu Baudet et al. "On the Security of Oscillator-Based Random Number Generators". In: J. Cryptology (2011): 🗇 + 4 💈 + 4 💈 + 2 🗧 - 🔿 🧠

Jitter Estimation

- Jitter in t_s maybe too small to be measured.
- Take a longer measuring interval t_m, the thermal jitter is "sqrt" accumulated with the interval size.
- Estimation for the σ_s^{th}
 - 1. Separating

$$\sigma_m^{th} = r_{th}\sigma_m, \sigma_s^{th} = \sqrt{\frac{t_s}{t_m}}\sigma_m^{th}.$$
 (2)

2. Approximating: t_m is short enough so that the σ_m^{th} dominates over the σ_m^{fl}

$$\sigma_m^{th} \approx \sigma_m, \sigma_s^{th} \approx \sqrt{\frac{t_s}{t_m}} \sigma_m.$$
(3)

• The total jitter σ_m should be estimated first.

Introduction

Preliminaries: Signal Model, Entropy Evaluation, Jitter Estimation

Jitter Estimation with High Accuracy

Jitter Estimation on FPGA

Comparisons and Conclusion

Error Investigation

Counter-based jitter method of Ma et al.

Edge-counting X: the number of the rising and falling edges of S_o in t_m

Approximation

$$Var(t_m) \approx Var(X).$$
 (4)

Vs. t_m , X is easy to measure on the chip.

Estimation

$$\sigma_m = \sqrt{Var(t_m)} \approx \sqrt{Var(X)}.$$
(5)

Error Investigation

► Source of error

$$X = \lfloor t_m - w + 1 \rfloor_{q=1} (q : quantization step)$$
(6)

1. waiting time factor:(-w + 1) 2. the quantization

Error Investigation

- Evaluation of the errors
 - Errors of the approximation (4): abs error $e_a = Var(X) Var(t_m)$, rel error $e_r = \frac{|e_a|}{Var(t_m)}$
 - Error level of Ma's method: $e_m = \frac{1}{2}e_r$

Sheppard's Correction¹¹

For a random variable v with continuous distribution, its rounding quantized value $v_q = [v]_q$. The quantization error $e_q = v - v_q$ will approximately follow U(-q/2, q/2) and be independent from v.

$$E(v) = E(v_q), E(v^2) = E(v_q^2) - q^2/12.$$
 (7)

¹¹William Fleetwood Sheppard. "On the Calculation of the most Probable Values of Frequency-Constants for Data arranged according to Equidistant Division of a Scale". In: Proceedings of the London Mathematical Society (1897).

Analysis and Correction

TCA

In the jitter estimation case,

► Var(X) and $Var(t_m)$

$$X = \lfloor t_m - w + 1 \rfloor_{q=1} = [t_m - w + 0.5]_{q=1}.$$
 (8)

$$e_q = (t_m - w + 0.5 - X) \sim U(-0.5, 0.5)$$
 (9)

w and e_q are approximately independent from t_m

 $\operatorname{Var}(X) = \operatorname{Var}(t_m - w + 0.5 - e_q) \approx \operatorname{Var}(t_m) + \operatorname{Var}(w) + \operatorname{Var}(e_q).$ (10)

The deviation between $Var(t_m)$ and Var(X) is indeed caused by w and e_q .

▶ New approximation for $Var(t_m)$

$${\sf Var}(t_m)pprox{\sf Var}(X)-{\sf Var}(w)-{\sf Var}(e_q)pprox{\sf Var}(X)-1/6.$$
 (11)

▶ New estimation for σ_m

$$\sigma_m \approx \sqrt{\operatorname{Var}(X) - 1/6}.$$
 (12)

Analysis and Correction

- Evaluation of the errors
 - Errors of new approxiamtion (11): $e_a = Var(X) \frac{1}{6} Var(t_m)$, $e_r = \frac{|e_a|}{Var(t_m)}$
 - Error level of our method : $e_m = \frac{1}{2}e_r$

Theoretical Error Analysis

Upper bound of the errors

$$(e_a)_{max} \approx \frac{1}{\pi^2} e^{-2\pi^2 \sigma_m^2}, (e_m)_{max} \approx \frac{1}{2\pi^2 \sigma_m^2} e^{-2\pi^2 \sigma_m^2}$$
 (13)

22 / 30

э

An Efficient Calculation of Var(X)

Ordinary Calculation

$$Var(X) = \frac{\sum_{i=1}^{N} x_i^2}{N} - (\frac{\sum_{i=1}^{N} x_i}{N})^2,$$
(14)

needs N + 1 multiplications, N is the sample size.

- ln modern logic devices, σ_m is usually very small, so the counting results x_1, \dots, x_N will vary slightly around \bar{x} .
- The sample space of X is small too.
 S_X = {p_i|p_i = [x̄] − I + i; 1 ≤ i ≤ 2I; 5 ≤ I ≪ N} can cover most of the counting results.
- New calculation
 - 1. Count x_1, \dots, x_N on p_1, \dots, p_{2I} , record with c_1, \dots, c_{2I}
 - 2. Calculate

$$Var(X) = \frac{\sum_{i=1}^{2I} c_i \cdot (p_i - \bar{x})^2}{N}.$$
 (15)

Only 4 $I \ll N + 1$ multiplications are needed.

イロト イヨト イヨト イヨト 二日

Introduction

Preliminaries: Signal Model, Entropy Evaluation, Jitter Estimation

Jitter Estimation with High Accuracy

Jitter Estimation on FPGA

Comparisons and Conclusion

Off-line Estimation

► Steps:

- 1. Count the edges of the oscillatory signal in intervals with different sizes (T_m s)
- 2. Estimate the total jitter σ_m with the proposed method.
- 3. Separate the jitter: fit $\sigma_m^2 T_m$ by $\sigma_m^2 = aT_m^2 + bT_m$, $\sigma_m^{th} = r_{th}\sigma_m = \sqrt{\frac{b}{b+aT_m}}\sigma_m$
- Setups: 3-inverters RO on Altera Cyclone IV FPGA with 305MHz, $T_m: 0.8\mu s \rightarrow 5.4\mu s$
- Results:

On-line Estimation

▶ Vs. Off-line Estimation: size of T_m is fixed.

Steps

- 1. Pre-calculate $r_{th} = \sqrt{\frac{b}{b+aT_m}}$, configure it in the circuit.
- 2. Estimate σ_m with the proposed method on the line.

3. Calculate
$$\sigma_m^{th} = r_{th}\sigma_m$$
 on the line.

Circuit model diagram for On-line estimation

Introduction

Preliminaries: Signal Model, Entropy Evaluation, Jitter Estimation

Jitter Estimation with High Accuracy

Jitter Estimation on FPGA

Comparisons and Conclusion

Comparisons

Figure: Comparisons of different methods

Methods	Error Level	Requirement for σ_m	Theoretically confirmed
Ma's in CHES2014	10%	0.92	no
Fischer's in CHES2014	5%	Undefined	no
Ours	1%	0.4141	yes

Advantages: high accurate, theoretically confirmed error, fast assessment.

Summary and Future Work

Summary

- We correct the error in the counter-based methods.
- $\bullet\,$ The error level of our estimation can be lower than $1\%\,$
- Efficiency is an additional advantage of our method.

Future work

Further decrease the requirement for σ_m and estimate it in a shorter interval, in order to reduce the ratio of the flicker jitter in the total jitter. Then the jitter separating approach is no longer necessary

Thanks for your attention!